Abstract
The transpulmonary thermodilution (TPTD) technique for measuring cardiac output (CO) has never been validated in the presence of a left-to-right shunt. In this experimental, paediatric animal model, nine lambs with a surgically constructed aorta-pulmonary left-to-right shunt were studied under various haemodynamic conditions. CO was measured with closed and open shunt using the TPTD technique (CO(TPTD)) with central venous injections of ice-cold saline. An ultrasound transit time perivascular flow probe around the main pulmonary artery served as the standard reference measurement (CO(MPA)). Seven lambs were eligible for further analysis. Mean (sd) weight was 6.6 (1.6) kg. The mean CO(MPA) was 1.21 litre min(-1) (range 0.61-2.06 l min(-1)) with closed shunt and 0.93 litre min(-1) (range 0.48-1.45 litre min(-1)) with open shunt. The open shunt resulted in a mean Q(p)/Q(s) ratio of 1.8 (range 1.6-2.4). The bias between the two CO methods was 0.17 litre min(-1) [limits of agreement (LOA) of 0.27 litre min(-1)] with closed shunt and 0.14 litre min(-1) (LOA of 0.32 litre min(-1)) with open shunt. The percentage errors were 22% with closed shunt and 34% with open shunt. The correlation (r) between the two methods was 0.93 (P<0.001) with closed shunt and 0.86 (P<0.001) with open shunt. The correlation (r) between the two methods in tracking changes in CO (ΔCO) during the whole experiment was 0.94 (P<0.0001). The TPTD technique is a feasible method of measuring CO in paediatric animals with a left-to-right shunt.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.