Abstract

Cardiac outflow in the early developmental stage of a chick embryo is known to be highly variable depending on environmental temperature. To investigate the effects of environmental hypothermia on the blood flow in the outflow tract (OFT) of chick embryonic hearts, microscopic flow images were consecutively captured from chick embryos at HH stage 17 (2.5days of incubation) at room temperature. Instantaneous velocity field information of blood flow in OFT was obtained using a micro-particle image velocimetry technique. The cyclic variations of the OFT vessel diameter and wall thickness were simultaneously measured. The experimental results show that environmental hypothermia causes bradycardia with a decrease in peak velocity during systole and the occurrence of backflow during diastole in the OFT. These abnormal phenomena seem to be attributed to the suppression of myocardial wall motion under hypothermic conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.