Abstract

Cardiovascular disease (CVDs) has become one of the leading causes of death, posing a significant threat to human life. The development of reliable Artificial Intelligence (AI) assisted diagnosis algorithms for cardiac sounds is of great significance for early detection and treatment of CVDs. However, there is scarce research in this field. Existing research mainly faces three major challenges: (1) They mainly limited to murmur classification and cannot achieve murmur grading, but attempting both classification and grading may lead to negative effects between different multi-tasks. (2) They mostly pay attention to unstructured cardiac sound modality and do not consider the structured demographic modality, as it is difficult to balance the influence of heterogeneous modalities. (3) Deep learning methods lack interpretability, which makes it challenging to apply them clinically. To tackle these challenges, we propose a method for cardiac murmur grading and cardiac risk analysis based on heterogeneous modality adaptive multi-task learning. Specifically, a Hierarchical Multi-Task learning-based cardiac murmur detection and grading method (HMT) is proposed to prevent negative interference between different tasks. In addition, a cardiac risk analysis method based on Heterogeneous Multi-modal feature impact Adaptation (HMA) is also proposed, which transforms unstructured modality into structured modality representation, and utilizes an adaptive mode weight learning mechanism to balance the impact between unstructured modality and structured modality, thus enhancing the performance of cardiac risk prediction. Finally, we propose a multi-task interpretability learning module that incorporates an important evaluation using random masks. This module utilizes SHAP graphs to visualize crucial murmur segments in cardiac sound and employs a multi-factor risk decoupling model based on nomograms. And then we gain insights into the cardiac disease risk in both pre-decoupled multi-modality and post-decoupled single-modality scenarios, thus providing a solid foundation for AI assisted cardiac murmur grading and risk analysis. Experimental results on a large real-world CirCor DigiScope PCG dataset demonstrate that the proposed method outperforms the state-of-the-art (SOTA) method in murmur detection, grading, and cardiac risk analysis, while also providing valuable diagnostic evidence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.