Abstract

Type 2 diabetes predicts outcome following acute myocardial infarction (AMI). Since underlying mechanics are incompletely understood, we investigated left ventricular (LV) and left atrial (LA) pathophysiological changes and their prognostic implications using cardiovascular magnetic resonance (CMR). Consecutive patients (N = 1,147; n = 265 with diabetes, n = 882 without diabetes) underwent CMR 3 days after AMI. Analyses included LV ejection fraction (LVEF); global longitudinal strain (GLS) and circumferential and radial strains; LA reservoir, conduit, and booster pump strains; and infarct size, edema, and microvascular obstruction. Predefined end points were major adverse cardiovascular events (MACE) within 12 months. Patients with diabetes had impaired LA reservoir (19.8% vs. 21.2%, P < 0.01) and conduit (7.6% vs. 9.0%, P < 0.01) strains but not ventricular function or myocardial damage. They were at higher risk of MACE than patients without diabetes (10.2% vs. 5.8%, P < 0.01), with most MACE occurring in patients with LVEF ≥35%. While LVEF (P = 0.045) and atrial reservoir strain (P = 0.024) were independent predictors of MACE in patients without diabetes, GLS was in patients with diabetes (P = 0.010). Considering patients with diabetes and LVEF ≥35% (n = 237), GLS and LA reservoir strain below median were significantly associated with MACE. In conclusion, in patients with diabetes, LA and LV longitudinal strain permit optimized risk assessment early after reperfused AMI with incremental prognostic value over and above that of LVEF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call