Abstract

Facilitated by the introduction of human induced pluripotent stem cells and protocols for their efficient directed differentiation at high quantity and quality, innovative human heart muscle models are being developed for applications in drug screens. Employed models range from the microscopic cardiomyocytes-on-a-chip scale to the cardiac macrotissues-on-a-plate scale. Whilst cardiomyocyte-on-a-chip models can be readily adapted to high-throughput primary screening, they are limited as to the deep phenotyping of contractility, and here in particular contractile force development. In lower throughput cardiac macrotissue-on-a-plate platforms, organotypic function, including anisotropic electrical spread of excitation and contractility, can be recapitulated at the macroscopic scale. This review serves as an overview of cardiac macrotissue-on-a-plate technologies with a focus on their application in the investigation of drug effects on heart muscle contractility and disease modeling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.