Abstract
The length-active tension relation or heterometric regulation (Frank–Starling mechanism) is modulated by nitric oxide (NO) which, released in pulsatile fashion from the beating heart, improves myocardial relaxation and diastolic distensibility. The NO signaling is also implicated in the homeometric regulation exerted by extrinsic factors such as autonomic nervous system, endocrine and humoral agents.In the in vitro working frog heart, the Chromogranin A (CGA)-derived peptide, Catestatin (CTS; bovine CGA344–364), exerts a direct cardio-suppressive action through a NOS–NO–cGMP-mediated mechanism which requires the functional integrity of the endocardial endothelium (EE) and its endothelin-1 B type (ETB) receptor. However, functional interplay between NO and CTS and their role in the Frank–Starling response of the frog heart are lacking. Here we show that CTS improves the sensitivity to preload increases similar to that exerted by NO. This effect is abolished by inhibition of NO synthase (L-NAME), guanylate cyclase (ODQ), protein kinase G (KT5823), PI3K (Wortmannin), as well as by the functional damage of EE (Triton X-100) suggesting that CTS operates through an EE-dependent NO release.On the whole, the use of the avascular frog heart revealed the EE as major sensor–transducer interface between the physical (volume load) and chemical (CTS) stimuli, NO functioning as a connector between heterometric and homeometric regulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.