Abstract

Relationships among positive inotropic response to cardiac glycosides, Na+,K+-ATPase inhibition and monovalent cation pump activities were studied using paced Langendorff preparations of guinea-pig heart. Na+,K+-ATPase activity was estimated from the initial velocity of (3H)-ouabain binding in ventricular homogenates, and cation pump activity from ouabain-sensitive 86Rb uptake of ventricular slices. These parameters were assayed in control, ouabain- or digitoxintreated hearts either at the time of inotropic response to the cardiac glycosides or during the course of drug washout. Development and loss of the inotropic response during ouabain or digitoxin perfusion and washout was accompanied by reduction and subsequent recovery of the initial ouabain binding velocity, respectively. If homogenates from glycoside-treated hearts were incubated at 37°C for 10 min during ouabain-binding studies, the levels of binding were not different from those of control hearts, indicating a rapid dissociation of the glycosides from cardiac Na+,K+-ATPase in this species. Despite differences in the time course of the loss of inotropic responses produced by ouabain or digitoxin, the relationship between Na+,K+-ATPase inhibition and inotropic responses were similar. Inotropic responses to digitoxin during perfusion, and subsequent los during washout, also were accompanied by a reduction and subsequent recovery of 86Rb uptake. A correlation between inhibition of cation pump activity and positive inotropy has hitherto not been demonstrated. Thus, it appears that with cardiac glycosides, a relationship exists among contractility, cardiac Na+,K+-ATPase and monovalent cation pump activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.