Abstract

Cardiac magnetic resonance imaging (CMR) remains underutilized as an exercise imaging modality, mostly because of the limited availability of MR-compatible exercise equipment. This study prospectively evaluates the clinical feasibility of a newly developed MR-conditional pedal ergometer for exercise CMR METHODS: Ten healthy volunteers (mean age 44 ± 16 years) and 11 patients (mean age 60 ± 9 years) with known or suspected coronary artery disease (CAD) underwent rest and post-exercise cinematic 3T CMR. Visual analysis of wall motion abnormalities (WMA) was rated by 2 experienced radiologists, and volumes and ejection fractions (EF) were determined. Image quality was assessed by a 4-point Likert scale for visibility of endocardial borders. Median subjective image quality of real-time cine at rest was 1 (interquartile range [IQR] 1-2) and 2 (IQR 2-2.5) for post-exercise real-time cine (p = 0.001). Exercise induced a significant increase in heart rate (62 [62-73] to 111 [104-143] bpm, p < 0.0001). Stroke volume and cardiac index increased from resting to post-exercise conditions (85 ± 21 to 101 ± 19 mL and 2.9 ± 0.7 to 6.6 ± 1.9 L/min/m2, respectively; both p < 0.0001), driven by a reduction in end-systolic volume (55 ± 20 to 42 ± 21 mL, p < 0.0001). Patients (2/11) with inducible regional WMA at high-resolution postexercise cine imaging revealed significant coronary artery stenosis in subsequently performed invasive coronary angiography. Exercise-CMR using our newly developed 3T MR-conditional pedal ergometer is clinically feasible. Imaging of both cardiac response and myocardial ischemia, triggered by dynamic stress, is rapidly conducted while the patient is near their peak heart rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call