Abstract

Fatal ventricular arrhythmias in the early period of life have been associated with cardiac channelopathies for decades, and postmortem analyses in SIDS victims have provided evidence of this association. However, the prevalence and functional properties of cardiac ion channel mutations in infantile fatal arrhythmia cases are not clear. Seven infants with potentially lethal arrhythmias at age < 1 year (5 males, age of onset 44.1 ± 72.1 days) were genetically analyzed for KCNQ1, KCNH2, KCNE1-5, KCNJ2, SCN5A, GJA5, and CALM1 by using denaturing high-performance liquid chromatography and direct sequencing. Whole-cell currents of wildtype and mutant channels were recorded and analyzed in Chinese hamster ovary cells transfected with SCN5A and KCNH2 cDNA. In 5 of 7 patients, we identified 4 mutations (p.N1774D, p.T290fsX53, p.F1486del and p.N406K) in SCN5A, and 1 mutation (p.G628D) in KCNH2. N1774D, F1486del, and N406K in SCN5A displayed tetrodotoxin-sensitive persistent late Na(+) currents. By contrast, SCN5A-T290fsX53 was nonfunctional. KCNH2-G628D exhibited loss of channel function. Genetic screening of 7 patients was used to demonstrate the high prevalence of cardiac channelopathies. Functional assays revealed both gain and loss of channel function in SCN5A mutations, as well as loss of function associated with the KCNH2 mutation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.