Abstract

Human embryonic stem (hES) cell-derived cardiomyocytes hold great promise for cardiovascular regenerative medicine. However, this application faces a number of challenges, including generating cardiomyocytes of adequate purity. With current protocols being used by several laboratories, cardiomyocyte differentiation from hES cells occurs at low frequency and results in a mixture of differentiated cells. Here we describe a novel method for enrichment of cardiomyocytes. Cardiomyocytes were isolated from embryoid body (EB) outgrowths by Percoll separation and then enriched by culturing the aggregates of cells (termed cardiac bodies, CBs) in suspension. The majority of CBs showed contractility after 1 week in culture and were positive for multiple cardiomyocyte- associated proteins. Enrichment of cardiomyocytes was evident by the increase in the expression of cardiac alpha and beta myosin heavy chains (alpha and betaMHC) in CBs in suspension culture compared to unpurified EB outgrowths. Flow cytometry analysis showed that 35-66% of the cells in CBs were positive for sarcomeric myosin heavy chain (sMHC) or cardiac troponin T (cTnT) expression. In addition, dissociated CBs were capable of reassociating into contracting aggregates in suspension and recovering contractility after the individual cells were replated onto matrix-coated surfaces. These data suggest that the CB method is a useful approach for the generation of cardiomyocytes at an adequate purity for cardiovascular therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call