Abstract
Cardiac beta-adrenergic signal transduction was examined in chronic portal vein-stenosed rats. Basal tension and maximum rate of tension development were significantly depressed in left ventricular papillary muscles (0.21 +/- 0.03 N/cm2 and 8.2 +/- 1.7 N.s-1.cm-2, respectively) compared with sham-operated controls (0.51 +/- 0.05 N/cm2 and 19.9 +/- 4.4 N.s-1.cm-2, respectively). The positive inotropic response to isoproterenol was also attenuated. Adenosine 3',5'-cyclic monophosphate formation was decreased significantly when GTP (-41.9%), isoproterenol with GTP (-45.3%), or guanosine 5'-O-(3-thiotriphosphate) (-52.4%) was used to stimulate adenylyl cyclase, but not when Mn2+ or forskolin was used. Beta-Adrenoceptor density (sham operated 24.6 +/- 2.0 fmol/mg; portal vein stenosed 26.4 +/- 2.1 fmol/mg) and the apparent dissociation constant (sham operated 0.26 +/- 0.04 nM; portal vein stenosed 0.29 +/- 0.04 nM) were unaffected. Portal venous hypertension did not alter beta-adrenergic receptor affinity for isoproterenol. However, it was necessary for isoproterenol to occupy three times the number of receptors in papillary muscles from stenosed animals to produce an equal increase in force generation. These data suggest that although portal vein stenosis does not alter cardiac beta-adrenoceptor density or affinity for ligands, transduction of the signal between the receptor and adenylyl cyclase is adversely influenced and may be responsible for the diminished responsiveness of beta-adrenoceptors in the myocardium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.