Abstract
Childhood obesity is a major public health concern; behavioural interventions induce weight reduction in some, but success is variable. Heart rate variability (HRV) has been associated with impulse control and extent of dieting success. This study investigated the relationship between HRV and post childhood obesity intervention weight-management success, and involved recording the frequency-domain HRV measures ratio between low frequency and high frequency power (LF/HF) and high frequency power (HF), and the time-domain measure, percentage of successive beat-to-beat intervals that differ by more than 50ms (PNN50). It was expected that greater LF/HF and lower HF would be associated with greater post-intervention weight gain, and that greater PNN50 would be associated with greater impulse control. Seventy-four participants aged 9-14 (M=10.7; s.d.: 1.1) attended a weight-management camp, where HRV was recorded. Stop signal reaction time (SSRT) was also recorded as a measure of impulse control. As expected, SSRT was positively associated with pre-intervention body mass (r=0.301, P=0.010) and negatively associated with PNN50 (β=0.29, P=0.031). Post-intervention body mass change was positively associated with LF/HF (β=0.34, P=0.037), but was not associated with HF. Lifestyle interventions may have a greater chance of effectively supporting long-term weight-management for children with lower LF/HF; assessing HRV of obese children may be helpful in informing obesity treatment decisions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.