Abstract

Post-ischaemic heart failure is a major cause of death worldwide. Reperfusion of infarcted heart tissue after myocardial infarction has been an important medical intervention to improve outcomes. However, disturbances in Ca2+ and redox homeostasis at the cellular level caused by ischaemia/reperfusion remain major clinical challenges. In this study, we investigated the potential of adeno-associated virus (AAV)-9-mediated cardiac expression of a Type-2 ryanodine receptor (RyR2) degradation-associated gene, Presenilin 1 (PSEN1), to combat post-ischaemic heart failure. Adeno-associated viral PSEN1 gene delivery elevated PSEN1 protein expression in a post-infarction rat heart failure model, and this administration normalised the contractile dysfunction of the failing myocardium in vivo and in vitro by reversing myocardial Ca2+ handling and function. Moreover, PSEN1 gene transfer to failing cardiomyocytes reduced sarcoplasmic reticulum (SR) Ca2+ leak, thereby restoring the diminished intracellular Ca2+ transients and SR Ca2+ load. Moreover, PSEN1 gene transfer reversed the phosphorylation of RyR2 in failing cardiomyocytes. However, selective autophagy inhibition did not prevent the PSEN1-induced blockade of RyR2 degradation, making the participation of autophagy in PSEN1-associated RyR2 degradation unlikely. Our results established a role of the cardiac expression of PSEN1 with AAV9 vectors as a promising therapeutic approach for post-ischaemic heart failure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call