Abstract

The pathogenesis of osteoporosis (OP) is closely associated with the disrupted balance between osteogenesis and adipogenesis in bone marrow-derived mesenchymal stem cells (BMSCs). We analyzed published single-cell RNA sequencing (scRNA-seq) data to dissect the transcriptomic profiles of bone marrow-derived cells in OP, reviewing 56 377 cells across eight scRNA-seq datasets from femoral heads (osteoporosis or osteopenia n = 5, osteoarthritis n = 3). Seventeen genes, including carboxypeptidase M (CPM), were identified as key osteogenesis-adipogenesis regulators through comprehensive gene set enrichment, differential expression, regulon activity, and pseudotime analyses. Invitro, CPM knockdown reduced osteogenesis and promoted adipogenesis in BMSCs, while adenovirus-mediated CPM overexpression had the reverse effects. Invivo, intraosseous injection of CPM-overexpressing BMSCs mitigated bone loss in ovariectomized mice. Integrated scRNA-seq and bulk RNA sequencing analyses provided insight into the MAPK/ERK pathway's role in the CPM-mediated regulation of BMSC osteogenesis and adipogenesis; specifically, CPM overexpression enhanced MAPK/ERK signaling and osteogenesis. In contrast, the ERK1/2 inhibitor binimetinib negated the effects of CPM overexpression. Overall, our findings identify CPM as a pivotal regulator of BMSC differentiation, which provides new clues for the mechanistic study of OP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.