Abstract

Carboxypeptidase M (CPM), a plasma membrane-bound enzyme, cleaves C-terminal basic amino acids with a neutral pH optimum. We studied its distribution in human, baboon, and dog brain and in dog peripheral nerves. Areas were dissected, homogenized, centrifuged, and assayed for activity with dansyl-Ala-Arg. The corpus callosum and the pyramidal and optic tract were especially rich in CPM, whereas basal ganglia and cortex had low activity. The identity of the basic carboxypeptidase activity with CPM was shown by similarities in subcellular localization, membrane attachment, substrate hydrolysis, inhibition by a specific basic carboxypeptidase inhibitor, and cross-reaction with anti-human CPM antiserum. This antiserum immunoprecipitated an average of 85% of the activity in human and baboon brain and approximately 66% in dog brain. CPM co-purified with myelin extracted from the brain. Consistent with results obtained in placenta and cultured kidney cells, CPM in the brain appears to be membrane-bound via a phosphatidylinositol glycan anchor. In the peripheral nerves, the specific activity in dog sciatic nerve and in vagus was high (98 and 149 nmol/h/mg of protein, respectively). In immunohistochemical studies, glia in the brain, which appear to be oligodendrocytes or astrocytes, and the outer aspects of myelin sheaths and Schwann cells in sciatic and vagus nerves were stained. We conclude that in some areas of the CNS and the PNS, CPM is closely associated with myelin and myelin-forming cells. Northern blot analysis revealed the presence of mRNA coding for CPM in the brain, showing that the enzyme is indeed synthesized there.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.