Abstract

The β-cyclodextrin coated magnetic nanoparticles were prepared by the surface modification of Fe3O4 magnetic nanoparticles using carboxymethyl-β-cyclodextrin. Prepared nanoparticles were characterized by X-ray diffraction analysis, transmission electron microscope, Fourier transform infrared spectroscopy, dynamic light scattering and vibrating sample magnetometer. The β-cyclodextrin modified Fe3O4 nanoparticles have a narrow size distribution with mean diameter about 10 nm. They exhibit superparamagnetic properties at room temperature with saturation magnetization of 48 emu/g. Since, the most reported technologies for arsenic removal are more effective in removing As(V) rather than As(III), the adsorption ability of these nanoparticles was investigated for removing As (III) from aqueous solution. The adsorption behavior of this material can be influenced by various factors such as contact time, pH, adsorbent dosage and initial concentration of As(III), which their effects were studied. Equilibrium data were fitted by Langmuir isotherm and the maximum removal percentage was obtained about 85% at optimum conditions. Using these modified Fe3O4 nanoparticles, the arsenic concentrations can be reduced to the allowed limits declared by the World Health Organization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.