Abstract

In this work, the luminescence of lanthanide supramolecular metallogel formed by the self-assembly of 5,5′,5″-(1,3,5-triazine-2,4,6-triyl)tris(azanediyl)triisophthalate (H6L) and Tb3+ was efficiently promoted by carboxymethyl chitosan (CMCS). The total quantum yield of the resultant metallogel (denoted as H6L/Tb3+/CMCS gel) was 9 times higher than the gel without CMCS. The average lifetime of H6L/Tb3+/CMCS gel increased from 0.51 ms to 1.20 ms. More importantly, the aqueous dispersion of H6L/Tb3+/CMCS xerogels showed a stable and pH-dependent luminescence. Based on the selective affinity of CMCS to different metal ions as well as with the aid of principal component analysis, H6L/Tb3+ /CMCS can be used as a sensor array to distinguish 11 metal ions (P < 0.05). This work provides a new strategy for the design and development of bio-based functional luminescent lanthanide supramolecular metallogels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call