Abstract

In the frequency range between 100 kHz and 2 GHz, ultrasonic absorption spectra have been measured for a series of carboxylic acids from formic to enanthic acid, including constitutional isomers. Also investigated have been the spectra for mixtures with water of short-chain formic, acetic, propionic, butyric, and isobutyric acid, in each case covering the complete composition range. The neat carboxylic acids feature two Debye-type relaxation terms with relaxation times between 5.6 and 260 ns as well as 0.14 and 1.4 ns, respectively, at room temperature. Depending on the composition, mixtures with water reveal an additional Debye relaxation term in the intermediate frequency range (acetic acid) or a term subject to a relaxation time distribution (propionic, butyric, and isobutyric acid). The relaxations of the neat acids are assigned to the equilibrium between monomers and single-hydrogen-bonded linear dimers and between linear and twofold-hydrogen-bonded cyclic dimers. The latter equilibrium is considerably catalyzed by hydronium and carboxylate ions. Several mixtures with water indicate one of the up to three Debye relaxations to reflect the protolysis of the organic acid. The term with underlying relaxation time distribution is due to noncritical fluctuations in the local concentrations. The Debye relaxations are evaluated to yield the parameters of the relevant elementary chemical reactions, such as the rate and equilibrium constants and the isentropic reaction volumes. A comparison of the correlation length of concentration fluctuations with data for other aqueous systems confirms the idea that the hydrophobic part of the organic constituent promotes the formation of a micro-heterogeneous liquid structure, whereas the hydrophilic moiety is of minor importance in this respect. The high-frequency limiting absorption suggests the equilibrium between conformers of linear dimers to contribute to the spectra well above the frequency range of measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.