Abstract

Bisphenol A (BPA) removal from drinking water is greatly concerned for human and living things' safety. In this study, we synthesized three carboxyl-functionalized copolyimides and their homopolymer counterparts and evaluated their potential for removing BPA from an aqueous solution. The polymers were prepared via polycondensation reaction by reacting 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) with various ratios of 3,5-diaminobenzoic acid (DABA) and 3,5-diamino-2,4,6-trimethylbenzoic acid (TrMCA). The effect of porosity, hydrophilicity, and methyl group content on BPA adsorption capacity has been investigated systemically. 6FDA-DABA demonstrated the highest BPA adsorption capacity with maximum adsorption of 67 mg g−1 and removal efficiency of approximately 90%. The anti-synergistic regime was observed between polymer porosity and hydrophilicity. As the content of the methyl group increases, the Brunauer–Emmett–Teller (BET) surface area increases, and the polymer hydrophilicity decreases, leading to a notable reduction in BPA adsorption capacity. The adsorption kinetics isotherms of BPA on 6FDA-based polyimides followed the pseudo-first-order kinetics, except for 6FDA-DABA, which was found to follow the pseudo-second-order. The BPA removal capacity was determined using both Langmuir and Freundlich isotherm models. The Langmuir model was more suitable than the Freundlich for the adsorption of BPA on the carboxyl-functionalized polyimides. To our knowledge, the prepared polyimides represent the first examples of utilizing polyimides for BPA removal. Investigating the structure/property relationship between polymers and their performance will pave the way to molecular engineering state-of-the-art polymer materials for efficient environmental remediation applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call