Abstract

Carboxylated single-walled carbon nanotubes (c-SWNTs) were incorporated into poly(glycidylmethacrylate-co-ethylene glycol dimethacrylate) [poly(GMA-co-EDMA)] monoliths to develop a novel monolithic stationary phase for capillary electrochromatography. The prepared monoliths were characterized by scanning electron microscopy and nitrogen adsorption. Additionally, pepsin, which is a chiral selector, was bonded to the c-SWNT-incorporated monoliths via epoxide groups as reactive sites and glutaraldehyde as the spacer. The effects of the c-SWNT concentration on chiral separation were investigated, and the results suggested that the c-SWNTs played a significant role in improving the separation efficiency, although pepsin was the dominant element in determining the chiral recognition ability of the monolith. Moreover, the influences of buffer pH, operating voltage and sample volume were also studied with (±)-nefopam as a model drug. Under the optimized conditions, the pepsin-modified poly(GMA-c-SWNTs-EDMA) monolith exhibited excellent enantioseparation performance for ten pairs of basic chiral drugs and extended the scope of chiral separation of drug enantiomers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.