Abstract
During the oil and gas drilling engineering, the selection of drilling fluids must take account of the technical and environmental factors. This study investigated the effectiveness of carboxylated cellulose nanocrystals (denoted as CNCs) as environmentally friendly additives for improving the rheological, filtration, and inhibitive properties of water-based drilling fluids (WBDFs). CNCs used in this study were modified by carboxylation reaction, displaying small size, negative surface charge, good colloidal stability, and prominent shear-thinning behavior. Experimental results indicated that BT/CNC suspensions had superior rheological properties, low fluid loss volumes, and effective inhibition, even at 140 °C. Microstructure analysis demonstrated that CNCs could attach to the surface of BT via hydrogen bond and ionic bond. CNCs, BT, and vicinal water molecules could form a stiff gel network, which had a strong resistance to flow under shear force, leading to a significant improvement in the rheological properties. Moreover, under the differential pressure, BT/CNC suspensions formed thin and less hydrophilic filter cakes with compact layered structure, thereby efficiently decreasing the fluid loss volume. Finally, due to the gel network and filtration ability, BT/CNC suspensions performed low water activity, which was beneficial for preventing the penetration of free water into the shales and borehole well. Thus, CNCs also exerted satisfactory inhibition on hydration and dispersion of BT and shales. As a result, CNCs showed great potential to be used as efficient, multi-functional, and environmentally friendly additives in WBDFs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.