Abstract

Known to be biocompatible and hemocompatible, polyethylene glycol (PEG) has been widely used as anti-fouling coating of biomaterials. Nanoparticles coated with functionalized PEG were also investigated for their nano-cell interactions, but seldomly on the coagulation system, especially with platelets. Both experiments and molecular dynamic simulations indicate that terminal carboxylation of PEG promotes its binding with calcium, especially in the ionized form, which makes it potential anticoagulants. Further, the carboxyl PEGylated magnetic nanoparticle (HOOC-PEG2000-MNP) exhibits significantly increased anticoagulant and antiplatelet properties, by entering the open canalicular system (OCS) of human platelets and binding with the cytoplasmic calcium ions. HOOC-PEG2000-MNP also acts as effective thrombolytic agents in dissolving mature blood clots under oscillating magnetic field both in vitro and in vivo. Therefore, the carboxyl PEGylated magnetic nanoparticles are prototype agents for antithrombotic and thrombolytic therapies and provide a versatile platform for targeted and effective treatments of acute cardiovascular diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.