Abstract

Microplastics (MPs) are ubiquitous in various environmental media and have potential toxicity. However, the neurotoxicity of carboxyl-modified polystyrene microplastics (PS-COOH) and their mechanisms remain unclear. In this study, Caenorhabditis elegans was used as a model to examine the neurotoxicity of polystyrene microplastic (PS) and PS-COOH concentrations ranging from 0.1 to 100 μg/L. Locomotion behavior, neuron development, neurotransmitter level, and neurotransmitter-related gene expression were selected as assessment endpoints. Exposure to low concentrations (1 μg/L) of PS-COOH caused more severe neurotoxicity than exposure to pristine PS. In transgenic nematodes, exposure to PS-COOH at 10–100 μg/L significantly increased the fluorescence intensity of dopaminergic, glutamatergic, serotonergic, and aminobutyric acid (GABA)ergic neurons compared to that of the control. Further studies showed that exposure to 100 μg/L PS-COOH can significantly affect the levels of glutamate, serotonin, dopamine, and GABA in nematodes. Likewise, in the present study, the expression of genes involved in neurotransmission was altered in worms. These results suggest that PS-COOH exerts neurotoxicity by affecting neurotransmission of dopamine, glutamate, serotonin, and GABA. This study provides new insights into the underlying mechanisms and potential risks associated with PS-COOH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call