Abstract

The application of carboxy-MIDA-boronate (MIDA=N-methyliminodiacetic acid) as an in situ CO surrogate for various palladium-catalyzed transformations is described. Carboxy-MIDA-boronate was previously shown to be a bench-stable boron-containing building block for the synthesis of borylated heterocycles. The present study demonstrates that, in addition to its utility as a precursor to heterocycle synthesis, carboxy-MIDA-boronate is an excellent in situ CO surrogate that is tolerant of reactive functionalities such as amines, alcohols, and carbon-based nucleophiles. Its wide functional-group compatibility is highlighted in the palladium-catalyzed aminocarbonylation, alkoxycarbonylation, carbonylative Sonogashira coupling, and carbonylative Suzuki-Miyaura coupling of aryl halides. A variety of amides, esters, (hetero)aromatic ynones, and bis(hetero)aryl ketones were synthesized in good-to-excellent yields in a one-pot fashion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.