Abstract

The surface immobilization of oligo- and poly(ethylene glycol) on solids is a widely used approach to prevent the nonspecific adsorption of proteins, bacteria, and cells. A novel tri(ethylene glycol) derivative, phosphoric acid-mono(22-carboxy-12,15,18,21-tetraoxadocosyl) ester, was synthesized with the aim to produce self-assembled monolayers (SAMs) on metal/metal oxide surfaces. This compound contains two reactive, terminal moieties: the phosphoric acid group as anchor to the surface, and the carboxylic group as linker for further attachment of molecules such as peptides and proteins to be present at the surface. The adsorption on titanium-dioxide-coated substrates was studied quantitatively and the resulting SAMs were characterized by angle-dependent X-ray photoelectron spectroscopy (XPS) and spectroscopic ellipsometry. XPS data showed that the monomolecular layer is attached with the phosphate group to the substrate, but not fully ordered. The dry adlayer thickness was determined to be 13.4 A, which is less than expected for a densely packed monolayer. Surface concentration calculated from ellipsometry data resulted in a grafting density of 2.03 molecules/nm2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.