Abstract

Si3N4 powders were synthesized by a carbothermal reduction method using a SiO2 + C combustion synthesis precursor derived from a mixed solution consisting of silicic acid (Si source), polyacrylamide (additive), nitric acid (oxidizer), urea (fuel), and glucose (C source). Scanning electron microscopy (SEM) micrographs showed that the obtained precursor exhibited a uniform mixture of SiO2 + C composed of porous blocky particles up to ∼20 μm. The precursor was subsequently calcined under nitrogen at 1200–1550°C for 2 h. X-ray diffraction (XRD) analysis revealed that the initial reduction reaction started at about 1300°C, and the complete transition of SiO2 into Si3N4 was found at 1550°C. The Si3N4 powders, synthesized at 1550°C, exhibit a mixture phase of α- and β-Si3N4 and consist of mainly agglomerates of fine particles of 100–300 nm, needle-like crystals and whiskers with a diameter of about 100 nm and a length up to several micrometers, and a minor amount of irregular-shaped growths.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.