Abstract
The purpose of this study is to prepare and characterize injectable carboplatinloaded poly(D,L-lactic-co-glycolic) acid copolymer (PLGA) microspheres for the intracerebral treatment of malignant glioma. The microspheres were prepared by an acetone/mineral oil emulsion and solvent evaporation method. Preparation variables were optimized and the following processing conditions resulted in the highest drug loading and best yields of the microspheres compared with those prepared with the other variables: the PLGA concentration was 8%(w/w) in the internal phase; the emulsifier (Span 80) concentration was 8%(w/w) in the external phase; the ratio of the internal phase: the external phase was 1:8; the stirring speed was 1500 rpm; the emulsion time was 15 min; the solvent evaporation time was 3.75 hr. Microspheres so prepared were analysed for size distribution, drug loading, in vitro release and morphological characteristics. The drug release in phosphate buffer solution started with a 10- day slow release period, followed by a fast near zero order release period from 12 to 22 days. The carboplatin release in brain homogenate was slower than in phosphate buffer solution. The morphological changes of the microspheres during the in vitro degradation correlated with the drug relase profile. In conclusion, the carboplatin-loaded PLGA microspheres were specifically prepared to meet the specification as an injectable and biodegradable brain implant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.