Abstract
Carbonylmetallates, [M(CO)(n)L](-), anionic transition-metal carbonyl complexes, represent a large family of metal-centered nucleophiles, and studying carbonylmetallates allows us to understand the differences in the behavior of the metal-centered complexes versus heteroatom-based nucleophiles. The mechanisms of carbonylmetallate reactions with aryl- and alkenyl halides have been examined by employing radical and, especially, carbanion trapping techniques. Carbonylmetallates show a marked preference for halogenophilic attack, and nucleophilic substitution with carbonylmetallates is often not a direct process, but proceeds through the initial attack at halogen with subsequent coupling of carbanion and HalM(CO)(n)L intermediates. Factors governing the competition between the halogenophilic and more common "carbophilic" reaction pathways, as well as the means of predicting the actual course of reaction are discussed. The review also considers other aspects of carbonylmetallate reactivity, including ion-pairing effects, radical-mediated nucleophilic substitution pathways, and the carbonylmetallate nucleophilicity scale in the reactions with π-electrophiles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.