Abstract

Two- or three-component catalysts composed of (i) sulfur or sulfur compound (H2S, CS2, COS, Na2S), (ii) basic additive (triethylamine, CH3ONa, Na2S), and usually (iii) vanadium(V) compounds (e.g. NH4VO3) were found to catalyze efficiently the reaction of CO + H2O with isomeric nitrophenols to give the corresponding aminophenols. The reaction proceeds smoothly at 398 and 483 K and initial pressure of 7 MPa, and its rate increases from 2- to 4-nitrophenol. The selectivity to aminophenols exceeding 96 per cent was obtained at the water to nitrophenol molar ratio higher than 5. The solvents such as methanol and dioxane ensured better contact of the reactants, which was necessary for achievement of such a high selectivity. The effectiveness of the sulfur components (based on the S content) is expressed by the following sequence: S : CS2 : Na2S : H2 S : COS = 1 : 1.2 : 2.5 : 10 : 11. The reaction takes place also under the reduced CO pressure to 0.1 - 0.35 MPa. Formation of side products and mechanism of the reaction are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.