Abstract
Advanced glycation end-products (AGEs) are formed during non enzymatic glycation and oxidation (glycoxidation) reactions. This process is accelerated in diabetics owing to hyperglycemia, and it has been implicated in the pathogenesis of diabetic complications. Surprisingly, AGEs increase in normoglycemic uremic patients to a much greater extent than in diabetics. AGE accumulation in uremia cannot be attributed to hyperglycemia nor simply to a decreased removal by glomerular filtration. Recently gathered evidence has suggested that, in uremia, the increased carbonyl compounds derived from carbohydrates and lipids modify proteins not only by glycoxidation reaction but also by lipoxidation reaction ("carbonyl stress"). Carbonyl stress has been implicated in the pathogenesis of long-term uremic complications such as dialysis-related amyloidosis. With regard to continuous ambulatory peritoneal dialysis (CAPD), the peritoneal cavity appears to be in a state of severe overload of carbonyl compounds derived from CAPD solution containing high glucose, from heat sterilization of the solution, and from uremic circulation. Carbonyl stress might modify not only peritoneal matrix proteins and alter their structures, but also react with mesothelial and endothelial cell surface proteins and initiate a range of inflammatory responses. Carbonyl stress might therefore contribute to the development of peritoneal sclerosis in patients with long-term CAPD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Peritoneal Dialysis International: Journal of the International Society for Peritoneal Dialysis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.