Abstract
Carbonyl products have been identified and their formation yields measured in experiments involving the gas-phase reaction of ozone with the 1-alkenes (RCH = CH 2) 3-methyl-l-butene (R = i-propyl), 4-methyl-l-pentene (R = i-butyl), 3-methyl-l-pentene ( R= s-butyl), 3,3-dimethyl-l-butene (R = t-butyl) and styrene (R = C 6H 5) at ambient T and p = 1 atm of air. Sufficient cyclohexane was added to scavenge OH in order to minimize reactions of OH with the alkenes and with their carbonyl products. Formation yields (carbonyl formed/ozone reacted) of primary carbonyls were close to the value of 1.0 that is consistent with the mechanism: O 3 + RCH = CH 2 → α(HCHO + RCHOO) + (1 - α) (H 2COO + RCHO), where formaldehyde and RCHO are the primary carbonyls and H 2COO and RCHOO are the biradicals. Measured sums of the primary carbonyl formation yields were 1.006 ± 0.053 (1 S.D.) for formaldehyde + methylpropanal from3-methyl-l-butene(α = 0.494 ± 0.049), 1.025 ± 0.017 for formaldehyde + 2-methylbutanal from 3-methyl-l-pentene (α = 0.384 ± 0.013),1.147 ± 0.050 for formaldehyde + 3-methylbutanal from 4-methyl-l-pentene (α = 0.384 ± 0.020), 0.986 ± 0.014 for formaldehyde + 2,2-dimethylpropanal from 3,3-dimethyl-l-butene (α = 0.320 ± 0.012) and 0.980 ± 0.086 for formaldehyde + benzaldehyde from styrene (α = 0.347 ± 0.059). Carbonyls other than the primary carbonyls were identified; formation pathways are proposed that involve subsequent reactions of the monosubstituted biradicals RCHOO. Similarities and differences between branched-chain 1-alkenes and n-alkyl-substituted 1-alkenes are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.