Abstract
Asparagine and aspartate are known to adopt conformations in the left-handed alpha-helical region and other partially allowed regions of the Ramachandran plot more readily than any other non-glycyl amino acids. The reason for this preference has not been established. An examination of the local environments of asparagine and aspartic acid in protein structures with a resolution better than 1.5 A revealed that their side-chain carbonyls are frequently within 4 A of their own backbone carbonyl or the backbone carbonyl of the previous residue. Calculations using protein structures with a resolution better than 1.8 A reveal that this close contact occurs in more than 80% of cases. This carbonyl-carbonyl interaction offers an energetic sabilization for the partially allowed conformations of asparagine and aspartic acid with respect to all other non-glycyl amino acids. The non-covalent attractive interactions between the dipoles of two carbonyls has recently been calculated to have an energy comparable to that of a hydrogen bond. The preponderance of asparagine in the left-handed alpha-helical region, and in general of aspartic acid and asparagine in the partially allowed regions of the Ramachandran plot, may be a consequence of this carbonyl-carbonyl stacking interaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.