Abstract

Phenolic substances are harmful to humans and other living things, even at low concentrations. Therefore, phenol must be removed from water with the proper process. One of the most effective processes for degrading phenol is heterogeneous catalytic oxidation. Three carbon materials as supports were used to prepare manganese-oxide based catalyst (2.5% MnOx/ACP and 2.5% MnOx/ACN), and graphene oxide (2.5% MnOx/GO). These catalysts were tested for the degradation of phenol in aqueous solution using peroxymonosulfate as a source of sulfate radical. The physio-chemical catalysts were characterised by several characterisation techniques such as powder X-ray diffraction, N2-sorption (BET), scanning electron microscopy (SEM) equipped with Dispersive Energy X-ray Spectroscopy (EDS). In comparison to other catalysts, heterogeneous activation of peroxymonosulfate was more effectively done by 2.5% MnOx/ACP, resulting in a higher production rate of sulfate radicals. In the presence of a catalyst at 0.2 g and 1 g peroxymonosulfate in 500 mL solution at 25 °C, 90% total organic carbon (TOC) removal and phenol decomposition of 100% was achieved in 90 min with phenol concentration of 75 mg/L. First-order kinetics were followed by phenol decomposition with the energy of activation on 2.5% MnOx/ACP of 15.0 kJ/mol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.