Abstract
Using molecular dynamics (MD) simulations, we report a carbon/silicon (C/Si) heterojunction formed by inserting carbon nanotubes (CNTs) into silicon nanotubes (SiNTs). Due to the weak mechanical property of the SiNTs, insertion of CNTs into them can not only reinforce their mechanical stabilities but also form multiwalled C/Si nanotube heterojunctions. The driving force of the coaxial assembly is primarily the intertube van der Waals (vdW) interactions. The coaxial self-assembly process is strongly tube size dependent, and the intertube distance (Δd) for a successful assembly between the two type nanotubes is around 3.5 Å. Simulations suggest possible bottom-up self-assembly routes for fabrication of novel nanomachines and nanodevices in nanomechanical systems. This study also suggests that the possibility of synthesizing SiNTs with fewer walls, even single-walled SiNT in aid of CNTs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.