Abstract
In order to achieve a sustainable future, researchers must continue to research improved electrode materials. Considering the high electronic conductivity, versatile redox activity, and enhanced energy storage performance, nanostructures have been employed as a novel electrode material for high-performance lithium-ion batteries (LIBs) and supercapacitors. Herein, carbon-coated selenium-rich trimetallic selenide (Cu2 NiSnSe4 @C) nanoparticles (NPs) as an efficient electrode material in energy storage devices are prepared. The prepared core-shell Cu2 NiSnSe4 @C NPs electrode is employed as ananode material for LIBs, which demonstrated a high reversible specific capacity of 988.46mA h g-1 over 100 cycles at 0.1 A g-1 with good rate capability. Additionally, the core-shell Cu2 NiSnSe4 @C NPs electrode exhibited an outstanding capacity of 202.5mA h g-1 at 5 A g-1 even after 10 000 cycles. Exploiting the synergistic characteristics, the core-shell Cu2 NiSnSe4 @C NPs material is also investigated as a battery-type electrode for hybrid supercapacitors. The assembled hybrid supercapacitor with Cu2 NiSnSe4 @C NPs and activated carbon showed excellent rate capability including high power (5597.77W kg-1 ) and energy (64.26Wh kg-1 ) densities. Considering the simple synthesis and enhanced energy storage properties, carbon-coated selenium-rich trimetallic selenide can be used as a durable electrode material for practical energy storage devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.