Abstract

The tremendous growth of Li-ion batteries into a wide variety of applications is setting new requirements in terms of cost, energy density, safety, and power density. One route toward meeting these objectives consists in finding alternative chemistries to current cathode materials. In this Article, we describe a new class of materials discovered through a novel high-throughput ab initio computational approach and which can intercalate lithium reversibly. We report on the synthesis, characterization, and electrochemical testing of this novel lithium-carbonophosphate chemistry. This work demonstrates how the novel high-throughput computing approach can identify promising chemistries for next-generation cathode materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.