Abstract

In this study, we investigate the direct electron-transfer reactivity of immobilized hemoglobin (Hb) on a polyurethane elastomer (PUE) film for biosensor designs. The PUE film synthesized by an additional polymerization possesses good biocompatibility, uniformity, and conformability and is ready for protein immobilization. Electrochemical and spectroscopic measurements show that the presence of multiwalled carbon nanotubes (MWNTs) increased the protein-PUE interaction, varied polymer morphology, improved the permeability and the conductivity of the PUE film, and thus facilitated the direct electron transfer between the immobilized Hb and the conductivity surface through the conducting tunnels of MWNTs. The immobilized Hb maintains its bioactivities and displays an excellent electrochemical behavior with a formal potential of -(334 +/- 7) mV. The addition of NaNO2 leads to an increase of the electrocatalytic reduction current of nitrite at -0.7 V. This allows us to develop a nitrite sensor with a linear response range from 0.08 to 3.6 mM. The proposed method opens a way to develop biosensors by using nanostructured materials mixed with low electrical conductivity matrixes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.