Abstract

Recently, the room-temperature phosphorescence (RTP) properties of carbon dots (CDs) have attracted significant interest. However, the regulation of RTP emission faces great challenges because of untunable emissive lifetime and wavelength. Here, ultrahigh-yield acrylamide-based N-doped carbonized polymer dots (AN-CPDs) with ultralong RTP lifetime are synthesized by a one-step hydrothermal addition polymerization and carbonization strategy. The RTP lifetime and wavelength of the proposed AN-CPDs can be regulated by changing the carbonization degree. Thus, the AN-CPDs' RTP lifetimes are in the range of 61.4-466.5 ms, while the RTP emission wavelengths vary from 485 to 558 nm. Further experiment and theoretical calculation proved that RTP can be attributed to the polymer/carbon hybrid structure and nitrous functional groups as the molecular state related emission centers. Supramolecular cross-linking in the aggregated state is vital for the RTP emission of the AN-CPDs by restricting the nonradiative transition of the triplet excitons. AN-CPDs of different RTP lifetimes can be applied to time-resolved multistage information encryption and multistage anticounterfeiting. This work facilitates the optical regulation and application potential of CDs and provides profound insights into the effect of the polymer/carbon hybrid structure on the properties of CDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call