Abstract

Intrinsic or acquired resistance to chemotherapy is a major hurdle in the treatment of cancer. One of the key mechanisms of resistance is the overexpression of the drug efflux transporter P-glycoprotein (Pgp). Pgp overexpression renders a large number of mechanistically unrelated chemotherapies ineffective. Targeting Pgp inhibition directly to overcome drug resistance, although conceptually and mechanistically attractive, has not translated to the clinic, in part because Pgp also has a critical protective function in many healthy tissues. It was recently discovered that carbonic anhydrase XII (CA XII), an enzyme associated with pH regulation in cancer, is co-expressed and co-located with Pgp in drug resistant cancer cells. CA XII is also upregulated by hypoxia, which is another microenvironmental factor that contributes to drug resistance. Here, we review findings that demonstrate modulation of CA XII may offer a promising new approach towards overcoming the longstanding hurdle of drug resistance and therapy failure against solid cancers. This review covers the use of CA XII inhibitors, both small molecule and antibody, in combination with chemotherapeutics that are substrates for Pgp. This combination therapy approach restores the efficacy of chemotherapy in resistant cells and offers a potential new therapeutic window to re-examine the targeting of Pgp as a safe, effective, and novel anticancer strategy.

Highlights

  • Cancer cells are highly proliferative, but due to poor vasculature and other metabolic alterations these cells utilize alternate pathways for energy generation as compared to healthy cells, including the glycolytic pathway

  • One of the key mechanisms of drug resistance is the overexpression of drug efflux transporters[6,7,8] of which P-glycoprotein (Pgp), known as multidrug resistance protein 1, is one of the most abundant

  • The co-expression of carbonic anhydrase XII (CA XII) and Pgp is closely linked with a drug resistant phenotype[14], but notably the relationship does not occur in healthy cells, allowing a new strategy to selectivity target Pgp only in cancer cells

Read more

Summary

Introduction

Cancer cells are highly proliferative, but due to poor vasculature and other metabolic alterations these cells utilize alternate pathways for energy generation as compared to healthy cells, including the glycolytic pathway. Following the discovery that carbonic anhydrase XII (CA XII), an enzyme that counters extracellular acidosis in hypoxic tumors, indirectly reduces the activity of Pgp in resistant cancer cells, a new concept of targeting the pH microenvironment via CA XII inhibition to overcome Pgp-mediated drug resistance has arisen[14].

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.