Abstract

This study aimed to identify candidate biomarkers associated with stage I non-small cell lung cancer (NSCLC). Sera from three groups, a lung cancer group (n = 11), benign control group (n = 12), and normal control group (n = 10), were collected and pooled. Protein expression profiles were analyzed by a combination of two-dimensional electrophoresis (2DE) and matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). These methods were used to separate, screen, and identify proteins that were differentially expressed between stage I NSCLC and controls. Differentially expressed proteins were validated by both Western blot and ELISA in an expanded sample size (22, 18, and 18 in three groups, respectively). MALDI-MS identified 12 differentially expressed proteins in the lung cancer group compared to the two control groups. Expression of carbonic anhydrase 1 (CA1) was validated by Western blot. CA1 was significantly elevated in the lung cancer group compared to controls. ELISA results confirmed that CA1 in the lung cancer group (3.18 ± 1.27ng/mL, n = 22) was highly expressed in stage I NSCLC patients compared to those in the benign control group (2.21 ± 0.71ng/mL, n = 18) and the normal control group (2.04 ± 0.63ng/mL, n = 18) (P = 0.001). In conclusion, we provide evidence that CA1 is highly expressed in the sera of stage I NSCLC patients. Additionally, CA1 might serve as a novel biomarker for early detection of NSCLC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.