Abstract
Conversion of coal to carbon-free energy carriers, H2 and electricity, with CO2 capture and storage may have the potential to satisfy at a comparatively low cost much of the energy requirements in a carbon-constrained world. In a set of recent studies, we have assessed the thermodynamic and economic performance of numerous coal-to-H2 plants that employ O2-blown, entrained-flow gasification and sour water-gas shift (WGS) reactors, examining the effects of system pressure, syngas cooling via quench versus heat exchangers, “conventional” H2 separation via pressure swing adsorption (PSA) versus novel membrane-based approaches, and various gas turbine technologies for generating co-product electricity. This study focuses on the synergy between H2 separation membrane reactors (HSMR) and syngas cooling with radiant and convective heat exchangers; such “syngas coolers” invariably boost system efficiency over that obtained with quench-cooled gasification. “Conventional” H2 separation requires a relatively high steam-to-carbon ratio (S/C) to achieve a high level of H2 production, and thus is well matched to relatively inefficient quench cooling. In contrast, HSMRs shift the WGS equilibrium by continuously extracting reaction product H2, thereby allowing a much lower S/C ratio and consequently a higher degree of heat recovery and (potentially) system efficiency. We first present a parametric analysis illuminating the interaction between the syngas coolers, high temperature WGS reactor, and HSMR. We then compare the performance and cost of six different plant configurations, highlighting: 1) the relative merits of the two syngas cooling methods in membrane-based systems, and 2) the comparative performance of “conventional” versus HSMR-based H2 separation in plants with syngas coolers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.