Abstract

A gasification plant may partially replace an industrial thermal plant and hydrogen production plant by polygenerating valuable products (hydrogen, power, steam) from low-value materials. Carbon energy analysis is one way of conceptually evaluating such processes. In this paper, the integration of a heavy residue (HR) gasification plant into a mid-size oil refinery (5 million t per year crude processing rate) is conceptually assessed via the comparison of electricity, natural gas and heavy residue consumption, and CO2 emissions. The main purpose of the integration is to reduce the consumption of natural gas currently used for hydrogen production at the expense of increased HR consumption and to achieve a reduction in CO2 emissions. Two case studies with different modes of operation were compared to base case showing that annual reduction of 2280 GWh in natural gas consumption with constant heat and hydrogen production is possible, accompanied with a slight increase in electricity purchase by 28 GWh per year. HR processing in the refinery increases by over 2800 GWh per year. The refinery’s CO2 emissions increase by more than 20% (up to 350 kt per year) as a result, while, after incorporating external emissions into the balance, a decrease of more than 460 kt CO2 per year can be achieved. This confirms that the integration of gasification plants within industrial enterprises and clusters has a positive environmental and energy impact and supports the idea of converting low-value material to more valuable products in polygeneration plants. The economics of HR gasifier integration in varying operations under real refinery conditions remain to be explored.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call