Abstract

Carbon-covered alumina (CCA) were synthesized from mesoporous alumina and a series of carbon sources (including sucrose, furfuryl alcohol, and benzene). They had structural properties of alumina and surface characteristics of carbon. When they were used as supports for molybdenum carbide, nitride, and phosphide catalysts, significantly higher activities were obtained in hydrazine decomposition as compared to those supported on the conventional alumina. The difference in the interactions of catalytic active sites with the CCA and with the alumina supports was preliminarily deemed to be the main cause of the better performance of CCA supported catalysts. Carbon contents on alumina and carbon sources were found to be important for CCA to be a good support. Carbon deposited on alumina in a near monolayer form showed the best activities. In contrast with sucrose and furfuryl alcohol, benzene as the carbon source readily yielded CCA supports with a hydrophobic surface, which resulted in relatively low dispersions of metal and, in turn, decreased activity of the supported catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call