Abstract

Carbon is a primary element to constitute organic molecules, while metal catalysis is a basic tool in organic synthesis. The establishment of a link between the ubiquitous carbon bonding and metal catalysis is thus a fundamentally important problem. However, there is yet no experimental example to introduce the role of carbon bonding in a metal catalysis process. Herein, we merged the topics of carbon bonding and metal catalysis together and demonstrated that a supramolecular carbon-bonding metal complex can not only give rise to catalytic activity but, more remarkably, direct structural-isomer selection events in gold-catalyzed reactions. The experimental results unveil the fact that the imposing of weak carbon-bonding interactions on a gold complex can alter the carbene as well as the Lewis acid property of these catalysts. These results illustrate a non-negligible role of weak carbon-bonding interactions in the modulation of metal catalysis. As such, carbon-bonding metal catalysis is suggested to be used as a routine tool not only in the development of reactions but more frequently in analyzing reaction processes in metal catalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.