Abstract

AbstractWith the increasing dependence on fossil energy, environmental pollution has become a serious problem for human beings. Renewable energy has been developed to reduce the use of non-renewable sources. Clean energy, such as wind, solar and tidal power, suffers from time and space factors. Therefore, energy storage system is required to match the development of clean energy. Metal-ion batteries (MIBs) have attracted much attention due to their high-energy density and cycle life. Among MIBs, lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), and potassium-ion batteries (PIBs) have attracted the most attention. However, metal ion batteries also face some problems. Due to the large radius of sodium/potassium ions, the active site cannot be fully utilized during the insertion/deinsertion process. In addition, charge transfer, ion transfer and volume change should be paid attention to in the exploit of electrode materials. In this regard, carbon-based nanomaterials show great potential. This chapter focuses on the application of carbon-based nanomaterials in MIBs, including metal-free carbon-based materials, atomically dispersed metal on carbon-based materials, metal nanoparticles encapsulated by carbon-based materials and metal nanoparticles supported on carbon-based materials. Finally, the application of carbon-based nanomaterials in metal batteries is briefly prospected, aiming to provide some enlightenment for the design and manufacture of MIBs.KeywordsMetal-ion batteriesCarbon-based nanomaterialsMetal-freeAtomically dispersed metalMetal nanoparticles

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call