Abstract

Abstract This article focuses on extending an H2/air rotating detonation engine's detonability limits by introducing solid carbon particles into the combustor. Carbon black particles consisting of 1% volatility and a carbon concentration of 99% were used as a solid-phase mixing agent for enhanced reaction wave dynamics. Carbon black was found to sustain detonations over multiple operational regimes formerly unattainable without carbon particles. The experiments confirm that detonations were attainable over a wide range of operational parameters, including the total mass flux flowing through the annulus (≅120–270 kg/s m2), the hydrogen/air equivalence ratios (0.65–1.0), and carbon additions (0–20 g). Chemiluminescence imaging was used to visualize the detonation wave within the annulus, quantify detonation wave velocities, and define a detonability map. The detonability map demonstrates the advantage of carbon addition, shows that detonation-based combustion can be sustained at leaner equivalence ratios, reduces hydrogen consumption dependency. The detonation wave velocities decreased as the H2/air equivalence ratio was reduced, where, in general, the detonation wave velocities decreased with respect to the Chapman–Jouguet velocity, suggesting a decrease in the detonation waves efficiency with reduced H2 concentrations. However, an extraordinary phenomenon was witnessed at very lean H2/air equivalence ratios and low mass flux conditions, where the detonation wave velocity increased upward of 100 m/s. This variation is a direct effect of the carbon particles, which drive the detonation wave. Thus, the results demonstrate that carbon particles’ addition provides an economically feasible solution to sustain high-efficiency energy production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call