Abstract
Metals and metal oxides are widely used as catalysts for materials production, clean energy generation and storage, and many other important industrial processes. However, metal-based catalysts suffer from high cost, low selectivity, poor durability, susceptibility to gas poisoning and have a detrimental environmental impact. In 2009, a new class of catalyst based on earth-abundant carbon materials was discovered as an efficient, low-cost, metal-free alternative to platinum for oxygen reduction in fuel cells. Since then, tremendous progress has been made, and carbon-based metal-free catalysts have been demonstrated to be effective for an increasing number of catalytic processes. This Review provides a critical overview of this rapidly developing field, including the molecular design of efficient carbon-based metal-free catalysts, with special emphasis on heteroatom-doped carbon nanotubes and graphene. We also discuss recent advances in the development of carbon-based metal-free catalysts for clean energy conversion and storage, environmental protection and important industrial production, and outline the key challenges and future opportunities in this exciting field. Reducing or even eliminating the need for precious-metal catalysts is crucial for the commercialization of clean energy technologies and various important industrial processes. Carbon materials have recently been shown to be cost-effective and efficient metal-free catalysts in clean energy generation and storage, environmental protection and chemical production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.