Abstract
New mineralogical and geochemical data from a suite of glass ± apatite ± amphibole ± phlogopite ± carbonate-bearing spinel wehrlite, lherzolite and harzburgite xenoliths from the Newer Volcanics, southeastern Australia, are consistent with metasomatic interactions between harzburgitic or refractory lherzolitic lithosphere, and penetrative sodic dolomitic carbonatite melts. Metasomatism occurred when ascending dolomitic carbonatites crossed the reaction enstatite + dolomite = forsterite + diopside + CO2 at ∼1.5–2.0 GPa, resulting in partial to complete replacement of primary orthopyroxene by sodic clinopyroxene, together with crystallization of apatite, amphibole and phlogopite, and release of CO2-rich fluid. In the sample suite examined, the minimum amount of carbonatite melt may be estimated on the assumption that metasomatism occurred in a closed system, and that the precursor lithology was clinopyroxene-poor harzburgite. The derivative wehrlite compositions require 6–12% carbonatite addition, the lherzolites require ∼8% or less, and the harzburgites require minimal addition of carbonatite. However, metasomatism probably also involved an open system component, during which residual and metasomatic phase compositions were determined by partitioning relationships with the reacting carbonatite, resulting in loss from the metasomatized volume of a fugitive, siliceous, aluminous, alkali- and LILE-enriched silicate melt.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.