Abstract
The disposal of industrial by-product tailings has become an important issue in solving environmental pollution. In this study, 15%, 30%, 50%, and 70% iron tailings were used to replace the natural sand in concrete, and 1.5% steel fiber and 0-0.75% PVA fibers were added to the iron tailings concrete. The effects of the iron tailings replacement rate and the fiber content on the mechanical properties, carbonization depth, and concrete porosity were studied in a carbonization environment. The results demonstrated that the compressive and splitting tensile strengths of concrete first increased and subsequently decreased with an increase in the iron tailings replacement rate, while the carbonation depth and porosity initially decreased and subsequently increased. When the replacement rate of iron tailings was 30%, the compressive strength and split tensile strength were increased by 7.6% and 17.7%, respectively, and the porosity was reduced by 8.9%. The compressive strength, carbonation depth and porosity of single-doped steel-fiber concrete were superior to those of ordinary iron tailings concrete. However, compared with single-doped steel fiber, the performance of steel-PVA fiber was further improved. Based on the mechanical properties, the carbonation depth test results of the three aforementioned types of concrete, the mathematical expression of the uniaxial compression stress-strain curve of iron tailings concrete, and the prediction equation of the carbonation depth of mixed-fiber iron tailings concrete were proposed. This study provides a reference for the application and popularization of fiber-reinforced iron tailings concrete in carbonization environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.