Abstract

Geological carbon capture and sequestration (CCS) is a promising technology for curbing the global warming crisis by reduction of the overall carbon footprint. Degradation of cement wellbore casings due to carbonation reactions in the underground CO2 storage environment is one of the central issues in assessing the long-term success of the CCS operations. However, the complexity of hydrated cement coupled with extreme subsurface environmental conditions makes it difficult to understand the carbonation reaction mechanisms leading to the loss of well integrity. In this work, we use biased ab initio molecular dynamics (AIMD) simulations to explore the reactivity of supercritical CO2 with the basal and edge surfaces of a model hydrated cement phase—portlandite—in dry scCO2 and water-rich conditions. Our simulations show that in dry scCO2 conditions, the undercoordinated edge surfaces of portlandite experience a fast barrierless reaction with CO2, while the fully hydroxylated basal surfaces suppress the formation of carbonate ions, resulting in a higher reactivity barrier. We deduce that the rate-limiting step in scCO2 conditions is the formation of the surface carbonate barrier which controls the diffusion of CO2 through the layer. The presence of water hinders direct interaction of CO2 with portlandite as H2O molecules form well-structured surface layers. In the water-rich environment, CO2 undergoes a concerted reaction with H2O and surface hydroxyl groups to form bicarbonate complexes. We relate the variation of the free-energy barriers in the formation of the bicarbonate complexes to the structure of the water layer at the interface which is, in turn, dictated by the surface chemistry and the degree of nanoconfinement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.